“Cre/loxP plus BAC”: a strategy for direct cloning of large DNA fragment and its applications in Photorhabdus luminescens and Agrobacterium tumefaciens

نویسندگان

  • Shengbiao Hu
  • Zhengqiang Liu
  • Xu Zhang
  • Guoyong Zhang
  • Yali Xie
  • Xuezhi Ding
  • Xiangtao Mo
  • A. Francis Stewart
  • Jun Fu
  • Youming Zhang
  • Liqiu Xia
چکیده

Heterologous expression has been proven to be a valid strategy for elucidating the natural products produced by gene clusters uncovered by genome sequencing projects. Efforts have been made to efficiently clone gene clusters directly from genomic DNA and several approaches have been developed. Here, we present an alternative strategy based on the site-specific recombinase system Cre/loxP for direct cloning gene clusters. A type three secretion system (T3SS) gene cluster (~32 kb) from Photorhabdus luminescens TT01 and DNA fragment (~78 kb) containing the siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58 have been successfully cloned into pBeloBAC11 with "Cre/loxP plus BAC" strategy. Based on the fact that Cre/loxP system has successfully used for genomic engineering in a wide range of organisms, we believe that this strategy could be widely used for direct cloning of large DNA fragment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of BAC clones into binary BAC (BIBAC) vectors and their delivery into basidiomycete fungal cells using Agrobacterium tumefaciens.

The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Us...

متن کامل

Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens.

Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RM...

متن کامل

Selectable Marker Gene Removal and Expression of Transgene by Inducible Promoter Containing FFDD Cis-Acting elements in Transgenic plants

Abstract Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production Background: Selectable marker gene (SMG) systems are critical for generation of transgenic crops. Transgenic crop production without using SMG is not economically feasible. However, SMGs are non-essential once an intact transgenic plant has been established. Eli...

متن کامل

Efficient Cre-lox linearisation of BACs: applications to physical mapping and generation of transgenic animals.

Due to the size of BAC, PAC and P1 clones, it is often difficult to construct detailed restriction maps, with large number of restriction fragments leading to ambiguity of mapping data. We report the use of Cre recombinase to linearise and asymmetrically introduce label at the unique loxP site of large loxP-containing clones. Subsequent partial digestion allows the direct ordering of restrictio...

متن کامل

LoxP-directed cloning: use of Cre recombinase as a universal restriction enzyme.

We have developed a novel way to use the Cre/loxP system for in vitro manipulation of DNA and a technique to clone DNA into circular episomes. The method is fast, reliable, and allowsflexible cloning of DNA fragments into episomes containing a loxP site. We show that a loxP site can serve as a universal target site to clone a DNA fragment digested with any restriction enzyme(s). This technique ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016